

46.(A) At equivalence point there appears salt of strong acid & weak base. Hence pH < 7

47.(D)
$$pH = pK_{In} + log \frac{[In^{-}]}{[HIn]}$$

At half neutralization,

$$[HCOOH] = \frac{C}{2}$$

$$[HCOO^{-}Na^{+}] = \frac{C}{2} \implies pH = pKa$$

- **49.(A)** Only methyl red has colour transition pH range (CTPR) in acidic range where equivalence point will lie. Litmus CTPR is 5-8 and others indicators too have CTPR overlapping with basic range of pH.
- 50.(B) Fact based
- **51.(C)** On adding equal volumes of two solutions the concentration of all the ions is halved. For precipitation I.P. > $\rm K_{SD}$

53.(B) AB(s)
$$\rightleftharpoons$$
 A⁺(aq) + B⁻(aq)
[B] = 10^{-4} will make Q> K_{SD}

54.(D) After mixing
$$[Ca^{2+}] = \frac{1}{200}$$
; $[Cl^-] = \frac{2}{200}$; $[Na^+] = \frac{2}{1000}$; $[SO_4^2] = \frac{1}{1000}$
I.P. of $CaSO_4 = 5 \times 10^{-6} (< K_{sp})$ hence no precipitate

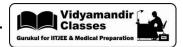
- **55.(C)** Precipitation is observed as I.P. $> K_{sp}$
- **56.(C)** Since K_{sp} of CuCl is very high compared to AgCl.

$$\begin{bmatrix} \text{Cl}^- \end{bmatrix} = \begin{bmatrix} \text{Cl}^- \end{bmatrix}_{from \ \text{AgCl}} + \begin{bmatrix} \text{Cl}^- \end{bmatrix}_{from \ \text{CuCl}} \approx \begin{bmatrix} \text{Cl}^- \end{bmatrix}_{from \ \text{CuCl}} = 10^{-3}$$

For AgCl

$$1.6 \times 10^{-10} = [Ag^+] \times 10^{-3}$$
 \Rightarrow $[Ag^+] = 1.6 \times 10^{-7}$ Hence $x = 7$

57.(D) S(AgCl) =
$$\sqrt{1.1 \times 10^{-10}}$$
 S(AgI) = $\sqrt{1.0 \times 10^{-16}}$ S(PbCrO₄) = $\sqrt{4 \times 10^{-14}}$ S(Ag₂CO₃) = $3\sqrt{\frac{8 \times 10^{-12}}{4}}$


58.(B) For precipitation

$$IP > K_{sp}$$

$$|Zn^{2+}||S^{2-}| > K_{cn}$$

$$[Cu^{2+}][S^{2-}] > K_{sp}$$

VMC | Chemistry 102 Ionic Equilibrium

59.(C) I.P.
$$(Ag_2CrO_4) = (10^{-4})^2 \times 10^{-5} = 10^{-13} \text{ (< } K_{sp}, \ Ag_2CrO_4)$$

Do not precipitate

I.P. of $AgCl = 10^{-4} \times 10^{-5} = 10^{-19} \text{ (> } K_{sp}, \ AgCl)$

AgCl is precipitated

60.(B)
$$[Ba^{2+}] = \frac{K_{sp}}{[CO_3^{2-}]} = \frac{5.1 \times 10^{-9}}{10^{-4}} = 5.1 \times 10^{-5} M$$